I'll get straight to the point. This recent bad luck has been draining the buffer pretty hard. I'm not sure if it is just normal 'Bad' luck, or if it's a problem with the Bip16 patches. Mainly the vinced mm patch.
A month ago, when the voting for Bip16 was going on, I was working with Gavin, testing his patches, but they where throwing errors on some solved shares.
I've been watching the logs live for the past week, and haven't seen any errors but still not exactly sure If I trust the patches. I've decided to temporarily disable Merged Mining (So no Namecoin mining) to run against the latest bitcoind. Your nmc balance will still be there, payouts will still work.
After the outage last month, I've convinced our host to give us 2 months rent free. This is a small burden off the server costs but won't last forever. If you can spare a few bitcoin, any little bit helps, it would be most appreciated.
As Always Thanks, RR
submitted by Luke Dashjr on Apr 04 2017:
Recently there has been some discussion of an apparent work-in-progress
extension block proposal by Christopher Jeffrey, Joseph Poon, Fedor Indutny,
and Steven Pair. Since this hasn't been formally posted on the ML yet, perhaps
it is still in pre-draft stages and not quite ready for review, but in light
of public interest, I think it is appropriate to open it to discussion, and
toward this end, I have reviewed the current revision.
For reference, the WIP proposal itself is here:
https://github.com/tothemoon-org/extension-blocks
==Overall analysis & comparison==
This is a relatively complicated proposal, creating a lot of additional
technical debt and complexity in comparison to both BIP 141 and hardforks. It
offers no actual benefits beyond BIP 141 or hardforks, so seems irrational to
consider at face value. In fact, it fits much better the inaccurate criticisms
made by segwit detractors against BIP 141.
That being said, this proposal is very interesting in construction and is for
the most part technically sound. While ill-fit to merely making blocks larger,
it may be an ideal fit for fundamentally different block designs such as
Rootstock and MimbleWimble in absence of decentralised non-integrated
sidechains (extension blocks are fundamentally sidechains tied into Bitcoin
directly).
==Fundamental problem==
Extension blocks are a risk of creating two classes of "full nodes": those
which verify the full block (and are therefore truly full nodes), and those
which only verify the "base" block. However, because the extension is
consensus-critical, the latter are in fact not full nodes at all, and are left
insecure like pseudo-SPV (not even real SPV) nodes. This technical nature is
of course true of a softfork as well, but softforks are intentionally designed
such that all nodes are capable of trivially upgrading, and there is no
expectation for anyone to run with pre-softfork rules.
In general, hardforks can provide the same benefits of an extension block, but
without the false expectation and pointless complexity.
==Other problems & questions==
These outpoints may not be spent inside the mempool (they must be redeemed
from the next resolution txid in reality).
This breaks the ability to spend unconfirmed funds in the same block (as is
required for CPFP).
The extension block's transaction count is not cryptographically committed-to
anywhere. (This is an outstanding bug in Bitcoin today, but impractical to
exploit in practice; however, exploiting it in an extension block may not be
as impractical, and it should be fixed given the opportunity.)
The merkle root is to be calculated as a merkle tree with all extension
block txids and wtxids as the leaves.
This needs to elaborate how the merkle tree is constructed. Are all the txids
followed by all the wtxids (tx hashes)? Are they alternated? Are txid and
wtxid trees built independently and merged at the tip?
Output script code aside from witness programs, p2pkh or p2sh is considered
invalid in extension blocks.
Why? This prevents extblock users from sending to bare multisig or other
various possible destinations. (While static address forms do not exist for
other types, they can all be used by the payment protocol.)
Additionally, this forbids datacarrier (OP_RETURN), and forces spam to create
unprovably-unspendable UTXOs. Is that intentional?
The maximum extension size should be intentionally high.
This has the same "attacks can do more damage than ordinary benefit" issue as
BIP141, but even more extreme since it is planned to be used for future size
increases.
Witness key hash v0 shall be worth 1 point, multiplied by a factor of 8.
What is a "point"? What does it mean multiplied by a factor of 8? Why not just
say "8 points"?
Witness script hash v0 shall be worth the number of accurately counted
sigops in the redeem script, multiplied by a factor of 8.
Please define "accurately counted" here. Is this using BIP16 static counting,
or accurately counting sigops during execution?
To reduce the chance of having redeem scripts which simply allow for garbage
data in the witness vector, every 73 bytes in the serialized witness vector is
worth 1 additional point.
Is the size rounded up or down? If down, 72-byte scripts will carry 0
points...)
==Trivial & process==
BIPs must be in MediaWiki format, not Markdown. They should be submitted for
discussion to the bitcoin-dev mailing list, not social media and news.
Layer: Consensus (soft-fork)
Extension blocks are more of a hard-fork IMO.
License: Public Domain
BIPs may not be "public domain" due to non-recognition in some jurisdictions.
Can you agree on one or more of these?
https://github.com/bitcoin/bips/blob/mastebip-0002.mediawiki#Recommended_licenses Abstract
This specification defines a method of increasing bitcoin transaction
throughput without altering any existing consensus rules.
This is inaccurate. Even softforks alter consensus rules.
Motivation
Bitcoin retargetting ensures that the time in between mined blocks will be
roughly 10 minutes. It is not possible to change this rule. There has been
great debate regarding other ways of increasing transaction throughput, with
no proposed consensus-layer solutions that have proven themselves to be
particularly safe.
Block time seems entirely unrelated to this spec. Motivation is unclear.
Extension blocks leverage several features of BIP141, BIP143, and BIP144 for
transaction opt-in, serialization, verification, and network services, and as
such, extension block activation entails BIP141 activation.
As stated in the next paragraph, the rules in BIP 141 are fundamentally
incompatible with this one, so saying BIP 141 is activated is confusingly
incorrect.
This specification should be considered an extension and modification to
these BIPs. Extension blocks are
not compatible with BIP141 in its current
form, and will require a few minor additional rules.
Extension blocks should be compatible with BIP 141, there doesn’t appear to be
any justification for not making them compatible.
This specification prescribes a way of fooling non-upgraded nodes into
believing the existing UTXO set is still behaving as they would expect.
The UTXO set behaves fundamentally different to old nodes with this proposal,
albeit in a mostly compatible manner.
Note that canonical blocks containing entering outputs MUST contain an
extension block commitment (all zeroes if nothing is present in the extension
block).
Please explain why in Rationale.
Coinbase outputs MUST NOT contain witness programs, as they cannot be
sweeped by the resolution transaction due to previously existing consensus
rules.
Seems like an annoying technical debt. I wonder if it can be avoided.
The genesis resolution transaction MAY also include a 1-100 byte pushdata in
the first input script, allowing the miner of the genesis resolution to add a
special message. The pushdata MUST be castable to a true boolean.
Why? Unlike the coinbase, this seems to create additional technical debt with
no apparent purpose. Better to just have a consensus rule every input must be
null.
The resolution transaction's version MUST be set to the uint32 max (`232 -
1`).
Transaction versions are signed, so I assume this is actually simply -1.
(While signed transaction versions seemed silly to me, using it for special
cases like this actually makes sense.)
Exiting the extension block
Should specify that spending such an exit must use the resolution txid, not
the extblock's txid.
On the policy layer, transaction fees may be calculated by transaction cost
as well as additional size/legacy-sigops added to the canonical block due to
entering or exiting outputs.
BIPs should not specify policy at all. Perhaps prefix "For the avoidance of
doubt:" to be clear that miners may perform any fee logic they like.
Transactions within the extended transaction vector MAY include a witness
vector using BIP141 transaction serialization.
Since extblock transactions are all required to be segwit, why wouldn't this
be mandatory?
- BIP141's nested P2SH feature is no longer available, and no longer a
consensus rule.
Note this makes adoption slower: wallets cannot use the extblock until the
economy has updated to support segwit-native addresses.
To reduce the chance of having redeem scripts which simply allow for garbage
data in the witness vector, every 73 bytes in the serialized witness vector is
worth 1 additional point.
Please explain why 73 bytes in Rationale.
This leaves room for 7 future soft-fork upgrades to relax DoS limits.
How so? Please explain.
A consensus dust threshold is now enforced within the extension block.
Why?
If the second highest transaction version bit (30th bit) is set to to 1
within an extension block transaction, an extra 700-bytes is reserved on the
transaction space used up in the block.
Why wouldn't users set this on all transactions?
default_witness_commitment has been renamed to
default_extension_commitment and includes the extension block commitment
script.
default_witness_commitment was never part of the GBT spec. At least describe
what this new key is.
- Deployment name: extblk (appears as !extblk in GBT).
Should be just extblk if backward compatibility is supported (and !extblk
when not).
The "deactivation" deployment'...[message truncated here by reddit bot]...
original: https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-April/013981.html
submitted by This hardcodes CSV and segwit activation heights, similar to the BIP 90 buried deployments for BIPs 34, 65 and 66. CSV and segwit have been active for over 18 months. Hardcoding the activation height is a code simplification, makes it easier to understand segwit activation status, and reduces technical debt. This was originally attempted by jl2012 in #11398 and again by me in #12360. In the past, a UASF was successfully carried out to activate the P2SH soft fork (BIP16). What is Segwit or Segregated Witness? Every Bitcoin transaction consists of three parts; sender, receiver and a digital signature (aka witness). Segwit was invented in order to shrink the filesize of a bitcoin transaction. The illustration above shows a simplified version of a block chain. A block of one or more new transactions is collected into the transaction data part of a block. Copies of each transaction are hashed, and the hashes are then paired, hashed, paired again, and hashed again until a single hash remains, the merkle root of a merkle tree.. The merkle root is stored in the block header. Shaolinfry’s BIP 148 proposal (UASF) states the concept may be possible because of the successful P2SH soft fork (BIP16) in the past. Currently, the share of full nodes signaling BIP 148 is roughly around 5 percent at the time of writing, and two mining pools (Bitfury and Bitcoin India) have also indicated UASF support. Furthermore, roughly For Bitcoin testnet, the BIP9 starttime will be midnight 1st March 2016 UTC (Epoch timestamp 1456790400) and BIP9 timeout will be midnight 1st May 2017 UTC (Epoch timestamp 1493596800). This BIP must be deployed simultaneously with BIP112 and BIP113 using the same deployment mechanism.
️ Download for free from http://bitsoftmachine.com/?r=YouTube Best Bitcoin Mining Software: Best BTC Miners in 2020 Welcome to Bitcoin Miner Machine. #Bitco... If you've ever wondered how Bitcoin really works and what the potential risks are, you're in the right place. Subscribe to TheHub http://goo.gl/87YJzG Have y... Start trading Bitcoin and cryptocurrency here: http://bit.ly/2Vptr2X Bitcoin mining is the process of updating the ledger of Bitcoin transactions known as th... -------------------------------------------------------------------------------- Download: https://anonfiles.com/j4m326Lco7 -------------------------------... Thanks to Away for sponsoring this video! Go to https://www.awaytravel.com/techquickie and use promo code techquickie to get $20 off your next order! Bitcoin...